Geometrical Effect in 2D Nanopores.

نویسندگان

  • Ke Liu
  • Martina Lihter
  • Aditya Sarathy
  • Sabina Caneva
  • Hu Qiu
  • Davide Deiana
  • Vasiliki Tileli
  • Duncan T L Alexander
  • Stephan Hofmann
  • Dumitru Dumcenco
  • Andras Kis
  • Jean-Pierre Leburton
  • Aleksandra Radenovic
چکیده

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of geometrical and geomechanical properties on slope stability of open-pit mines using 2D and 3D finite difference methods

Slope stability analysis is one of the most important problems in mining and geotechnical engineering. Ignoring the importance of these problems can lead to significant losses. Selecting an appropriate method to analyze the slope stability requires a proper understanding of how different factors influence the outputs of the analyses. This paper evaluates the effects of considering the real geom...

متن کامل

Free Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method

This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...

متن کامل

Supporting Information for Geometrical effect in 2D Nanopores

1Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland 2Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States 3Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States 4Department of Engineering, University of Camb...

متن کامل

Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.

Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron micro...

متن کامل

DNA translocation through single-layer boron nitride nanopores.

Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 2017